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In contrast to other cases of integrable equations of motion of a body with a fixed point, 
determ~ation of the components of the angular velocity of such a body in moving coor- 
dinates in Hess’ solution [l] is not reducible to quadratures ; it reduces to a Riccati differ- 
ential equation, which complicates investigation considerably. 

The case of integrability pointed out by Hess has been investigated by many authors, 
largely by analytical methods p-77. A geometric interpretation of the motion of a body 
in this solution was given by Zhukovskii [8], who used an intermediate moving coordinate 
system. 

The present paper contains a direct interpretation (i. e. one which does not involve 
intermediate coordinate systems) based on Kharlamov’s dynamic [9 and lo] and kinema- 
tic [ll and 121 equations. 
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By forgoing the principal coordinate axes usually employed in this problem in favor 
of Kharlamov’s special axes, we are able to obtain a relatively simple equation for the 

moving angular velocity hodograph. 

1. The motion of a body in the case in question can be conveniently studied in the 
special coordinate system proposed by Kharlamov. The Hess conditions and the fourth 
integral here become [ll] l?, = 0, = a* t r=O 

Let us rotate the coordinate axes about the first axis in such a way that b, = 0 and 

write out the equations and integrals of motion, 

dy i dt = blyz - v,l-, dz / df = - b,$ + vlr 

dv I dt = a* (~1 - y-v& dvl I dt = bp, - am, dv, / df = y (av - bv,) (1.1) 

‘;,a* (y2 + z’?) - VI- = E, yv, + zvt = k, v* + v,L _t v2* = 1 

The components of the angular velocity vector can be written as 

or = b,y, o2 = a*y, o, = a*z (1.2) 

If br = 0 we have the Lagrange case, We therefore assume from now on that b 1 + 0. 

Let bl > 0. Introducing the dimensionless variables y’, z’, r, 0 i, 

Y = V-qFY,. 
- 

z=J’r/blz’. t=r/fi, Ui=a*VTj&Wi 
and the parameters 

c=2bl/a+, h-E/T. k’=k 1.m (1.3) 
we find from (1. l), (1.2) that 

y’ = yz - v*, z’ = - g + vi (i.4) 

v’ = 2 (N, - y?,) / c, 81 = yv, - 2zv / c. v*’ = y (2v / c - vr) (f-5) 

f $ :* - it = ch, p, + zv) = k, V* + viz + VI = 1 (I.61 

01 = ‘l<Y, 0 *=y.o,=r (1.7) 

For convenient notation we have omitted the primes in relations (1.4)-( 1.7). The 

dot denotes differentiation with respect to the dimensionless time 7. 
From Eqs.(l.4) with allowance for (1.6) we obtain 

‘/n(~‘+z’)‘~~)‘(y*_~-z*){l-~(y*+t*)/c-hhj*)--;k’ 

Pi - *v’ = --v(v’+ t’,+, 

Next, we introduce the polar coordinates y = p ~0s~. I = p sinq. We then obtain a 

system of two differential equations for determining p, 9, 

pp =m, pv=-p’cw cptk I(P)-~“1 ( _ 1 -(5-h)tl-k’) (1.8) 

The dependence of p on q~ is given by the equation 
d’P -= p’coeq-k 

dp PV75J 
(l-9) 

a. Let us determine the domain of variation of the parameters c, h, k. To find the 
range of variation of e we express it in terms of the components of the inertia tensor. 

settingA,, >.we have A,>A, c=2)/(~m-&)/~~, o<s<z 

The first equation of (1.8) has real solutions only for j (p) > 0. This imposes a restric- 
tion on one of the parameters h, k. 
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Let us leave k as the independent parameter. The range of variation of h depends 
on k. 

In order for f (p) > 0 it is necessary that f (po) > 0, where & is the largest root of the 

equation 1’ (p) = 0. Hence, h > h, >-1 ; in this condition h, is the largest root of the 
equation defining k , 2c[9h-h’+(h*$ 3))rh~+3]-27k’=z0 

As 1 k / decreases to zero, h, decreases to - 1. 

3. From (1.7) we see that the mbving hodograph lies in the plane w I = I/* m2, and 
that the projection of the moving hodograph on the plane o, = 0 is the curve s defined 

by system (1.8) or by the equivalent equation (1.9). 
Let us investigate this curve. The projection of the moving hodograph lies in the ring 

C: PI < p < p2. where p,, p1 are the positive roots of the equation / (p) = 0. The exis- 
tence of these roots is proved by the fact that 

f(O)<O, f(fN>@oI f(m)<0 

It is essential that pr > 0, and that p can vanish only for k = 0. 

The shape of the curve s depends essentially on the number of singular points of Eq. 
(1.9). We denote the singular points as follows : 

Ml (PI, OIL M-1 (PI. -PI), Jf2 (Pr* a). iv-2 (Pr. - 92) 

a = arc cos (k / p?), ‘p2 = arc cos (k / p2’) 

The number of singular points of the equation under consideration is not larger than 
four. Let us stipulate that 

k, +%--_~~)/c, h2 = (kvr+ c fi)/c 

We distinguish five cases according to the number of singular points. 

1. Equation (1.9) has four singular points when p? > 1 k I. This is the case for 

all h>h, iflkl>f,and for h>h,if lkl <I. 
2. Equation (1.9) has three singular points if pf = 1 k I. Here 1 k 1 < I, h = h,. 
3. Equation (1.9) has two singular points if the interval (or, p2j contains a value 

1~. such that p.* = Ikl.Here IkI<i,kl<k<ks. 
4. Equation (1.9) has one singular point if p,s = 1 k I; here J k 1 < I, h = RI. 

5. Equation (1.9) has no singular points if pSa < 1 k 1; here h, < h < hs. 
In order to investigate the curve I let us construct the direction field for Ea.(l. 9) : 

(3.1) 

Here 6 is the angle between the positive direction of the coordinate p and the tangent 
to the curve at this point ; it is measured counterclockwise. 

Equation (3.1) defines two directions at each point of the domain, since )‘fo has two 
values differing in their sign at each point. These directions are symmetric with respect 
to the ray constructed from the origin to the given point. It is therefore sufficient to 
investigate the direction field, assuming that 1/m in expression (3.1) is a positive 

quantity. 
When the coordinate p = pl, p2 we have tgb = m, i. e. the curve s tangent to the 

inner and outer boundaries of the ring c , respectively. The domain G, in which tg 6 > 0 
is separated from the domain C, in which tg 6 < 0 by the curve L: PJ cosq - k = 0 

along which t.g 6 = 0. The curve L passes through the singular points of the equation 
under investigation. 
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Let us consider the variation of tg 6 as the variable point moves along a radius from 

one boundary of the ring G to the other. Along a radius which does not intersect the lint 
L the absolute value 1 fg 6 1 diminishes from infinity to some value and then increases 
again without limit. 

If the radius intersects the line L, then Q 6 varies from infinity to zero, which it rea- 
ches at the point of intersection of the radius with the line L. Here tg8 changes sign, 

and if the point reaches the boundary of the domain C, then tg.6 once again becomes 
infinite, 

If h < 0, then the direction field (and the curve L)I are symmetric to the direction 
field for k > 0 with respect to the. z -axis. For this reason we shall first consider the case 
k > 0. 

From the first equation of (I. 8) we find that p is an elliptic function of the time T 
with the period 

T&.!!!!- 
‘0, V7.3 

The polar angle cp can be found from the second equation of (X.8). If the initial point 
is chosen in the domain C,, then Q begins to increase with increasing time ; if it is cho- 
sen in C,, then cp begins to decrease with increasing time, Hence for each of the cases 

l- 5 we must consider two variants corresponding to the two initial positions of the ini- 
tial point. 

1) the initial point lies in G, ((p = .“I); 
2) the initial point lies in G, (qr = 0). 

4. To continue our investigation we introduce the symbols Sk*, Skz, ski, $2 , which 
are the points where the curves si, s? are tangent to the circles p = Pzt o = ps. 

Let ~@,a$ be the values of the polar angle Q for which sl, Sz intersect the line L. 
Here and below the superscript denotes the number of the domain CP in which the cho- 

sen initial point lies. 
Let us establish two important properties of the curve s which follow from the singu- 

larity of the direction field of Eq.(l. 9). 
A) ‘Ihe arcs SirSi’, .Si”s,” of the curve s cannot intersect the arcs Sj’s$ and Sj’sj’ 

forany r,~ , and can intersect the arcs tj’.Sj,,‘. “j~Sj,r* in the symmetric direction. 

B) For all i we have o,i >oii_r’ and a8i2<azi+l! 
The arcs Sjl~il, Sj2sj* are obtainable as the solutions of system (1.8) for the time in- 

terval (0, ‘12Tl, when we take Sj’, Sj’ as our initial points. All the conditions of exist- 

ence and uniqueness of the solution of system (1.8) are fulfilled in this case, i, e. a sin- 

gle integral curve (or, which is the same thing, a single arc Sj’Sj’+ Si’sj’) passes through 
every point of the domain c,’ . This proves the first half of the statement (A). 

If we change the sign of the radical in the first equation of (1.8), then the solutions 

of the resulting system (1.8) in the interval (0, *i&j are the arcs sj’ Sj.11, sj*.Sj+r’,provi- 
ded we take ~~1, bjf as our initial points. This and the preceding consideration imply the 
validity of the second part of the statement (A). 

Property (B) is self-evident. 
Let us note a corollary of Property (A). 

C) If we associate the points Sg, ~3, Skr. s,* with the values of their arc coor- 
dinates whose origins are some points of the circles p = fir p = p,(we consider the 
counterclockwise direction positive), then Property (A) implies that the sequences Skr, 
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aa’, Sk’* a~* are strictly monotonic. 
Now let us investigate the cases l-5. 

la. Let us take a point Sol lying in the domain C, on the circle Q = ps which is 
not a singular point of Eq. (1.9). and study the motion of the variable point M of the 

curve s. 
At the initial instant the curve r’ is tangent to the circle p - ps. With increasing time 

Fig. 1 

p begins to decrease and p begins to 
increase. The point Bf emerges from &,I 
and reaches the point .sos after the time 
l/,T; at the same time the curve fi is 
tangent to the circle p = ox (the &rve 
t1 has an inflection point in the interval 

(pr, pa). At this instant the radical in 
the first equation of (1.8) changes sign, 

after which Q increases. The curve $1 

again passes through the inflection point, 

touches the outer circle at the point S,r 
for I = T , etc. The piece of the curve 

a. which contains inflection points is of 

the type Fl. The piece of the curve $1 

which does not intersect the line L is of 

the type Fr. 
Let.SJbe the first of the points &’ 

lying in the domain c,. On intersecting 
the line L the curve i’ passes from the 

domain C1 into the domain C,, whereupon 
the angle Q begins to decrease. The point 
M passes through the point S,,,‘, and for 

some value of r leaves the domain G, 
(the curve s’ intersects the line’ L a se- 

cond time), By virtue of property (B) 

ao” > W, we infer from Corollary (C) 
that *,‘>I ,,+d so that the poiut M 

with increasing time intersects the arc 
s&&r,’ and reaches the point s,,,t..The 

curve 9 then again intersects the line L and the picture is repeated. The piece of the 

curve.t, containing self-intersection points but no inflection points is of the type F,.The 
piece of the curve a! which intersects the line L is of the type Ps. 

It is clear that the curve s which results if we take some point SO* of the domain Ca 
as our initial point is of the same shape as the curve r’. 

If ~~2 is the first of the points ri* which lies in the domain C,, then the points Sc’, sjs 
do not leave the arc &,,r&* of the circle p = &, and the points sit, tj* do not leave the 
arcs t,,,%,* of the circle p - pr for i > m, i > e. As ‘c 4 00 , the points S$. E+end to 
& and the lx&ts ~1, 4s to a,, ; the trajectories of the variables point M of the CUNes 

9, # approach without limit the limiting closed trajectory S, which passes through the 

points 4& The trajectory S, is the limiting cycle for the curves 3.3. 
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The trajectory S, is unique for all initial positions of the point for the chosen parameter 
values, i. e. for tne chosen domains G, Cr, C,. This is proved by the fact that on leaving 
the point in G, fixed and taking as out initial point any point from the domain (I.,, we find 

that the trajectory S, is the limiting cycle of the curves c’ when any points of the domain 
Cr are taken as the initial points. Similarly, holding fixed some initial point in Cl, we 

find that S,is the only limiting cycle for the curves Z for any positions of the initial 
point in Ct. Fig. la shows the curves sr, s*. The limiting cycle S,,is shown separateiy in 

Fig. la (*) . 
lb. Let us consider the existence of the curve r’ which passes through the singular 

point A& Let us take the latter as our initial point; since in this position the velocity 
of the point M of. the curve Z is equal to zero, the transverse and radial components of 

the acceleration at this point are 
uh, =o, ‘Dp= F(p3/2P, 

From this we see that the point M emerges from the point M-s ; at this time the curve 
r’ is tangent to the radius. 

The subsequent behavior of the curve does not differ from that described earlier for 

the case where the curve J intersects the line L;. The curve 9 is of the type F, ; its 

limiting cycle is S,. 

Fig. 2 

If we replace T by - r in the second equation of (1.8), the resulting system (1.8) 
defines the curve sr as t varies from 0 to - a. Here the angle cp decreases, the point M 

emerges from the point M_,, and the curve 9 is tangent to the radius. The subsequent 

behavior of the curve s’ is as described in Sect. la for the case where the curve s’ does 
not intersect the line L, i.e. where the curve d is of the type RI. 

Now, taking some point of this curve situated on the circle Q = a as our initial point, 
we obtain the curve e-d which passes through a singular point of Eq.(l. 9) and has S, 
as its limiting cycle ; the point M_, is a cusp of the curve a-1’. In the same way we 
find that the domain C, contains a trajectory G;) which passes through the singular point 

df-1. The shape of the curve s in this case is shown in Fig. lb. 
bet us consider the shapes of the curve a* for various initial points in the domain C,. 

To do this we extend the curves 3, Z for negative values of the time. As T H - 00 the 
trajectory of the variable point Al of the given curves ~“1, P* approaches without limit 

*) All of the letters S at the inner circles in Figs, 1-4 are small ; all of the letters S at 
the outer circles are capitals. The symbol Pin the figures appears as S in the text. 
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the unique closed trajectory Se0 passing through the points ~0~. SO’. We note that the tra- 
jectory S.0 is symmetric to the trajectory S, with respect to the y-axis. 

It is easy to show that the domain C, contains two trajectories or*, e-r* passing through 

the singular points Mr, M-r, respectively. 
Let fi,, N-s be the points of the curves ~rs, 5-r) lying on the circle p - p, which direc- 

tly precede& M-s. 
The points Mr, M-r, M,, M-,, fir. N-i, roe, SO” divide C,into four domains (Fig.Pa) ; 

the shape of the curve f depends on the domain in which the initial point is chosen. 

The segments of the curve s? lying in domains I, II, IV are of the type Fz ; that lying 

in III is of the type Fr. 
When points in domains II or I are chosen as the initial points, the curves s? can be 

found from the line shown in Fig. la if as our initial point we take S,?, S? , respectivdy. 
Fig. 2b shows the curves S* when the initial points lie in domains III and IV, We note 

that if the initial point lies in domain IV, then the curve 82 leaves the domain C, and 

passes through the entire domain Ct. 

(a) (b) 

Fig. 3 

In precisely similar fashion the domain C, breaks down into four subdomains according 

to the shape of the curve $1. 
Thus, the curve s in the case just considered has a unique limiting cycle S, for any 

initial point. If the initial point lies on the trajectories S,, S,‘. then the curve s is 
closed. Each singular point of Eq.(l. 9) is associated with a single trajectory which pas- 
ses through this point. The singulat point is the cusp of each curve. In our case there 
are four trajectories which have a cusp. 

2. The curve d for this case (Fig.2b) can be obtained by the same reasoning as above. 
Division of c,, G, into domains characterized by a specific shape of the curve s can be 
effected as in Case 1. 

As in the above case, there exist two closed trajectories obtainable by appropriate 
choice of the initial point. For any other positions of the initial point the curves s*, P 

have S, as their only limiting cycle. 

In contrast to the previous case, the present choice of parameters gives rise to three 
trajectories with cusps. 

3. Let us take the point SO? (cp = 0) of the domain G, as our initial point. The coor- 
dinates p and cp decrease with increasing time. As soon as the curve 3 intersects the 
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line L- the angle 9 begins to increase ; p begins to increase at the instant r ‘,‘,Twhen 
the line sz touches the circle p = pt . When the trajectory P intersects the Iine b the 
second time, the angle cp again begins to diminish ; at the instant T j= T the curve s? 
touches the outer’circle at the point Sr? 

We have three possible variants: 

(a) St, < G, (b) SJ” > &is (c) Sr’ = So’ 

Let us investigate the curves fi for each of these variants. 

a) Considering the curve t’ jointly with’s, we find that the trajectory of the vari- 
able point Mof the curves 9, ti approaches the closed curve S, without ti.mit asr --t oc . 
As in Case 1 there exists a closed curve~,~ symmetric to S, with respect to the jr-axis. 

Let us investigate the curve $2 for various positions of the initial points in the domain 
C,. The arcs s(c%, ro-.GO divide C, into three domains (Fig. 3a). For domaind I and III we 

have Sic,’ > Si’ ; in domain II, by hypothesis, Si+ra < Sin. 
The shape of the curve r” with some point from domains I-III as our initial point is 

shown in Fig. 3b. 
Thus, if the initial point chosen in accordance with the above assumptions lies on the 

curves S,, S,“,then the curves s I, s* are closed. For all other positions of the initial point 

the curves sl, 6;’ have S, as their only limiting cycle. 

It 

Fig. 4 Fig. 5 

b) In this case the curve 6 does not have a limiting cycle (Fig. 3~). The variable 
point k of the curve s ‘as r A OQ executes an infinite number of revolutions about the 

origin. The curve s densely fills the whole of the ring 6. The piece of the curve I which 
intersects the line i is of the type F* ; the remaining piece is of the type PI. 

c) Under this condition there exists a single closed trajectory Se symmetric with 
respect to the y -axis which passes through all the points of intersection of the y-axis and 
the circles p = p,. p = ps. For all points of the domain G, except the points of t’he curve 
sL we have Si+l’ > Si’ ; hence the angIe q receives a negative increment in the period 
r-T. If the initial point in the domain cp is chosen in such a way that cpo > 0, then 

the variable point .V of the curve C leaves the domain C,, passes through the entire do- 
main C, , and re-enters c,. 

Fig. 4 shows the trajectory S, and the curves Z for two different positions of the initial 

point. 
The curves s in this case have A’, as their only limiting cycle. 
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We note that in each of variants (a),(b). (c) there exist two trajectories with cusps. 
4. Let us take any point of the domain G other than the singular point -11, of Eq. (1.9) 

as our initial point. For all points of the ring C other than the point JI,we have 

k- p3 COB cp > 0. so that the angle cp always increases. The curve s (Fig. 5) is of the type 
1“,. The variable point ,I1 of the curve x executes an infinite number of revolutions about 
the origin as T -+ x . The curve J densely fills the whole of the ring C. The singular 

point Jl,is the cusp of the curve c. 
5. This case differs from the previous one only in the fact that the curve 8 does not 

have a cusp. 

Thus the case c > 0, k > 0 has been covered in its entirety. When c has the opposite 
sign we obtain a curve s symmetric to that considered with respect to the y-axis ; the 

case c > 0, C < 0 corresponds to a curve s symmetric to that studied with respect to the 

z-axis. 
We note that system (1. 8) is satisfied by the solutions p y pI, p = 9s. The curve in 

this case is a circle, and the moving hodograph an ellipse. 

The author is grateful to P. V. Kharlamov for formulating the problem and supervising 
the present study. 
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It is generally agreed that intense oscillations of cavity bubbles without collapse, consti- 
tute one of the main reasons for the cavity erosion of materiats. When the dimension of 

a cavity bubble reaches a certain limiting value, strong pressure pulses may occur in the 

surrounding liquid, which can cause erosion by local cyclic loads [l and 21. 
Oscillations of cavity bubbles in a viscous liquid, exhibit a number of distinctive fea- 

tures caused by the viscosity. Authors of [3 and 47 noted the fundamental influence of 
viscosity while investigating the behavior of a spherical cavity in a viscous, incompessi- 

ble liquid. The existence of two different types of motion was discovered : bubbles which 
are smaller than a critical size, are filled slowly in an infinitely long time ; the filling 

of large bubbles takes pIace rapidly with an unlimited accumulation of energy during 

collapse. 
Betow we find that, when the bubble in a viscous incompressible liquid is filled with 

gas, then two modes of motion exist, depending on the initial radius of the bubble, oscil- 

latory or monotonically aperiodic. 
Authors of [5] use dimensional analysis to derive a qualitative formula deiining the 

critical bubble size D, separating the inertial and inertialess mode of expansion of a 

gaseous sphere in a viscous liquid 

where pand p are the dynamic viscosity and density of the iiquid,res~ctively, and r+ 

is the characteristic time of the process, determined experimentally. Below we derive a 
formula for the critical diameter of the gas bubble. 

Let us suppose that a spherical gas bubble is situated in an infinite, viscous, incompres- 

sible liquid, We assume that the pressure and density of the gas are uniform throughout 
the bubble. This of course is true, provided that the vetocity of the boundary of the gas- 

eous sphere is much smaller than the velocity of sound in the gas at a given tempe- 

rature. Viscosity of gas is assumed to be negligible. The following nonlinear, second 
order, differential equation [5] describes the variation in the radius of the bubble 

and the initial conditions are 
R = Ro, dRldt = 0 when t =t 0 

Here R = R (t) is the radius of the bubble, (I denotes the surface tension of the liquid, 

pp denotes constant pressure of the liquid away from the bubble and p’ denotes the pres- 
sure of gas within the bubble. 

Assuming that the process of expansion and contraction of gas within the bubble is 


